If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2-21-25w=0
a = 4; b = -25; c = -21;
Δ = b2-4ac
Δ = -252-4·4·(-21)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-31}{2*4}=\frac{-6}{8} =-3/4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+31}{2*4}=\frac{56}{8} =7 $
| 2(6k+5)=-38 | | 15+7x=-13 | | 7-x-2=4 | | 2m–8=-28 | | -2.4-3x=11.4 | | 8n-8=-10+6n | | 6(p=1)=3(p-12) | | 54=3(-5n+3) | | 17-x=26 | | 8x+1=2x+3x+28 | | 15-2m=-5+8m | | 17-x/2=15 | | -24=14y–5 | | -3=-6y+3y | | q/5+8=33 | | 1/3t+1/2t=1 | | 0=x²+12x-1 | | 48x^2+56x=-8 | | k2-15k+60=4 | | 10=2(d+3) | | m^2+14=9m | | 8(k-6)+58=2(4k+5 | | x-12-3=11 | | -5b-6=1-5(b+2) | | (a+5)^3=0 | | 6=k+17 | | 7x-(8-3x)=2 | | 5/7x+29=57 | | 3a^2-24a=45 | | 6w+9=6w-15 | | 4(x-1)^2-3=0 | | (x+6)(-x+1)=0 |